Troponin I gene expression during human cardiac development and in end-stage heart failure.
نویسندگان
چکیده
Recent reports have demonstrated the presence of two isoforms of troponin I in the human fetal heart, namely, cardiac troponin I and slow skeletal muscle troponin I. Structural and physiological considerations indicate that these isoforms would confer differing contractile properties on the myocardium, particularly on the phosphorylation-mediated regulation of contractility by adrenergic agonists. We have investigated the developmental expression of these isoforms in the human heart from 9 weeks of gestation to 9 months of postnatal life, using Western blots revealed with troponin I antibodies to detect troponin protein isoforms and Northern blots to detect the corresponding mRNAs. The results show the following: 1) Slow skeletal muscle troponin I is the predominant isoform throughout fetal life. 2) After birth, the slow skeletal isoform is lost, with cardiac troponin I being the only isoform detectable by 9 months of postnatal development. 3) The protein isoforms and their corresponding mRNAs follow the same pattern of accumulation, suggesting that the transition in troponin expression is regulated at the level of gene transcription. The developmental transition in troponin I isoform content has implications for contractility of the fetal and postnatal myocardium. We further analyzed right and left ventricular muscle samples from 17 hearts in end-stage heart failure resulting from pulmonary hypertension, ischemic heart disease, or dilated cardiomyopathy. Cardiac troponin I mRNA remained abundant in each case, and slow skeletal muscle troponin I mRNA was not detectable in any of sample. We conclude that alterations in troponin I isoform content do not therefore contribute to the altered contractile characteristics of the adult failing ventricle.
منابع مشابه
Analysis of the relation between coping ways with stress and Cardiac Biomarker Troponin I in coronary heart disease patients
Introduction: Coping ways with stress in coronary heart disease patients can lead to significant changes in levels of Cardiac Biomarker Troponin I, but researchers had not explored it empirically. So, the main objective of this study was to identify the relationship between coping ways with stress and Cardiac Biomarker Troponin I and also, finding coping ways that predict changes in the concent...
متن کاملAn Aptamer-based Biosensor for Troponin I Detection in Diagnosis of Myocardial Infarction
Background: Acute myocardial infarction (MI) accounts for one third of deaths. Cardiac troponin I (TnI) is a reliable biomarker of cardiac muscle tissue injury and is employed in the early diagnosis of MI.Objectives: In this study, a molecular method is introduced to early diagnosis of MI by rapid detection of TnI.Materials and Methods: The detection method was based on electrochemical aptasens...
متن کاملHallmarks of ion channel gene expression in end-stage heart failure.
Electrical conductance is greatly altered in end-stage heart failure, but little is known about the underlying events. We therefore investigated the expression of genes coding for major inward and outward ion channels, calcium binding proteins, ion receptors, ion exchangers, calcium ATPases, and calcium/calmodulin-dependent protein kinases in explanted hearts (n=13) of patients diagnosed with e...
متن کاملA point mutation (R192H) in the C-terminus of human cardiac troponin I causes diastolic dysfunction in transgenic mice.
Cardiac troponin I (cTnI) mutations have been linked to the development of restrictive cardiomyopathy (RCM) in human patients. We modeled one mutation in human cTnI C-terminus, arginine192-->histidine (R192H) by cardiac specific expression of the mutated protein (cTnI(193His) in mouse sequence) in transgenic mice. Heart tissue sections revealed neither significant hypertrophy nor ventricular di...
متن کاملRe-expression of fetal troponin isoforms in the postinfarction failing heart of the rat.
Molecular switches between the troponin T and I isoforms are known to occur in various conditions, but the results from studies of failing human hearts with various etiologies are contradictory and it is not certain whether troponin isoform changes occur. Therefore, the molecular switching of troponin isoforms during normal development and heart failure (HF) after myocardial infarction were inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 72 5 شماره
صفحات -
تاریخ انتشار 1993